ANDHRA KESARI UNIVERSITY

Programme: B.Sc. Honours in Physics (Major)

w.e.f. AY 2023-24

COURSE STRUCTURE

Year	Semester	Course	Title of the Course	No. of Hrs /Week	No. of Credits
	I 1		Essentials and Applications of Mathematical, Physical andChemical Sciences	3+2	4
т		2	Advances in Mathematical, Physical and Chemical Sciences	3+2	4
1			Mechanics and Properties of Matter	3	3
	II	3	Mechanics and Properties of Matter Practical Course	2	1
		1	Waves and Oscillations	3	3
		4	Waves and Oscillations Practical Course	2	1

SEMESTER-I

COURSE 1: ESSENTIALS AND APPLICATIONS OF MATHEMATICAL, PHYSICAL ANDCHEMICAL SCIENCES

Theor	credits: 4	5 hrs/week

Course Objective:

The objective of this course is to provide students with a comprehensive understanding of the essential concepts and applications of mathematical, physical, and chemical sciences. The course aims to develop students' critical thinking, problem-solving, and analytical skills in these areas, enabling them to apply scientific principles to real-world situations.

Learning outcomes:

1. Apply critical thinking skills to solve complex problems involving complex numbers, trigonometric ratios, vectors, and statistical measures.

2. To Explain the basic principles and concepts underlying a broad range of fundamental areas of physics and to Connect their knowledge of physics to everyday situations

3. To Explain the basic principles and concepts underlying a broad range of fundamental areas of chemistry and to Connect their knowledge of chemistry to daily life.

4. Understand the interplay and connections between mathematics, physics, and chemistry in various applications. Recognize how mathematical models and physical and chemical principles can be used to explain and predict phenomena in different contexts.

5 To explore the history and evolution of the Internet and to gain an understanding of network security concepts, including threats, vulnerabilities, and countermeasures.

UNIT I: ESSENTIALS OF MATHEMATICS:

Complex Numbers: Introduction of the new symbol i – General form of a complex number – Modulus-Amplitude form and conversions

Trigonometric Ratios: Trigonometric Ratios and their relations - Problems on calculation of

angles Vectors: Definition of vector addition - Cartesian form - Scalar and vector product and

problems Statistical Measures: Mean, Median, Mode of a data and problems

UNIT II: ESSENTIALS OF PHYSICS:

Definition and Scope of Physics- Measurements and Units - Motion of objects: Newtonian Mechanics and relativistic mechanics perspective - Laws of Thermodynamics and Significance- Acoustic waves and electromagnetic waves- Electric and Magnetic fields and their interactions- Behaviour of atomic and nuclear particles- Wave-particle duality, the uncertainty principle- Theories and understanding of universe

UNIT III: ESSENTIALS OF CHEMISTRY: :

Definition and Scope of Chemistry- Importance of Chemistry in daily life -Branches of chemistry and significance- Periodic Table- Electronic Configuration, chemical changes, classification of matter, Biomolecules- carbohydrates, proteins, fats and vitamins.

UNIT IV: APPLICATIONS OF MATHEMATICS, PHYSICS & CHEMISTRY:

Applications of Mathematics in Physics & Chemistry: Calculus , Differential Equations & Complex Analysis

Application of Physics in Industry and Technology: Electronics and Semiconductor Industry, Robotics and Automation, Automotive and Aerospace Industries, Quality Control and Instrumentation, Environmental Monitoring and Sustainable Technologies.

Application of Chemistry in Industry and Technology: Chemical Manufacturing, Pharmaceuticals and Drug Discovery, Materials Science, Food and Beverage Industry.

UNIT V: ESSENTIALS OF COMPUTER SCIENCE:

Milestones of computer evolution - Internet, history, Internet Service Providers, Types of Networks, IP, Domain Name Services, applications.

Ethical and social implications: Network and security concepts- Information Assurance Fundamentals, Cryptography-Symmetric and Asymmetric, Malware, Firewalls, Fraud Techniques- Privacy and Data Protection

Recommended books:

- 1. Functions of one complex variable by John.B.Conway, Springer- Verlag.
- 2. Elementary Trigonometry by H.S.Hall and S.R.Knight
- 3. Vector Algebra by A.R. Vasishtha, Krishna Prakashan Media(P)Ltd.
- 4. Basic Statistics by B.L. Agarwal, New age international Publishers
- 5. University Physics with Modern Physics by Hugh D. Young and Roger A. Freedman
- 6. Fundamentals of Physics by David Halliday, Robert Resnick, and Jearl Walker

7. Physics for Scientists and Engineers with Modern Physics" by Raymond A. Serway and John W. Jewett Jr.

- 8. Physics for Technology and Engineering" by John Bird
- 9. Chemistry in daily life by Kirpal Singh
- 10. Chemistry of bio molecules by S. P. Bhutan
- 11. Fundamentals of Computers by V. Raja Raman
- 12. Cyber Security Essentials by James Graham, Richard Howard, Ryan Olson

STUDENT ACTIVITIES

UNIT I: ESSENTIALS OF MATHEMATICS:

1: Complex Number Exploration

Provide students with a set of complex numbers in both rectangular and polar forms.

They will plot the complex numbers on the complex plane and identify their properties

2: Trigonometric Ratios Problem Solving

Give students a set of problems that require the calculation of trigonometric ratios and their relations.

Students will solve the problems using the appropriate trigonometric functions (sine, cosine, tangent, etc.) and trigonometric identities.

3: Vector Operations and Applications

Provide students with a set of vectors in Cartesian form.

Students will perform vector addition and subtraction operations to find the resultant vectors.

They will also calculate the scalar and vector products of given vectors.

4: Statistical Measures and Data Analysis

Give students a dataset containing numerical values.

Students will calculate the mean, median, and mode of the data, as well as other statistical measures if appropriate (e.g., range, standard deviation).

They will interpret the results and analyze the central tendencies and distribution of the data.

UNIT II: ESSENTIALS OF PHYSICS:

1. Concept Mapping

Divide students into groups and assign each group one of the topics.

Students will create a concept map illustrating the key concepts, relationships, and applications related to their assigned topic.

Encourage students to use visual elements, arrows, and labels to represent connections and interdependencies between concepts.

2. Laboratory Experiment

Select a laboratory experiment related to one of the topics, such as motion of objects or electric and magnetic fields.

Provide the necessary materials, instructions, and safety guidelines for conducting the experiment.

Students will work in small groups to carry out the experiment, collect data, and analyze the results.

After the experiment, students will write a lab report summarizing their findings, observations, and conclusions.

UNIT III: ESSENTIALS OF CHEMISTRY

1: Chemistry in Daily Life Presentation

Divide students into groups and assign each group a specific aspect of daily life where chemistry plays a significant role, such as food and nutrition, household products, medicine, or environmental issues.

Students will research and create a presentation (e.g., PowerPoint, poster, or video) that showcases the importance of chemistry in their assigned aspect.

2: Periodic Table Exploration

Provide students with a copy of the periodic table.

Students will explore the periodic table and its significance in organizing elements based on their properties.

They will identify and analyze trends in atomic structure, such as electronic configuration, atomic size, and ionization energy.

3: Chemical Changes and Classification of Matter

Provide students with various substances and chemical reactions, such as mixing acids and bases or observing a combustion reaction.

Students will observe and describe the chemical changes that occur, including changes in color, temperature, or the formation of new substances.

4: Biomolecules Investigation

Assign each student or group a specific biomolecule category, such as carbohydrates, proteins, fats, or vitamins.

Students will research and gather information about their assigned biomolecule category, including its structure, functions, sources, and importance in the human body.

They can create informative posters or presentations to present their findings to the class.

UNIT IV: APPLICATIONS OF MATHEMATICS, PHYSICS & CHEMISTRY

1: Interdisciplinary Case Studies

Divide students into small groups and provide them with interdisciplinary case studies that involve the interdisciplinary application of mathematics, physics, and chemistry.

Each case study should present a real-world problem or scenario that requires the integration of concepts from all three disciplines.

2: Design and Innovation Project

Challenge students to design and develop a practical solution or innovation that integrates mathematics, physics, and chemistry principles.

Students can choose a specific problem or area of interest, such as renewable energy, environmental conservation, or materials science.

3: Laboratory Experiments

Assign students laboratory experiments that demonstrate the practical applications of

mathematics, physics, and chemistry.

Examples include investigating the relationship between concentration and reaction rate, analyzing the behavior of electrical circuits, or measuring the properties of materials.

.4: Mathematical Modeling

Present students with real-world problems that require mathematical modeling and analysis.

UNIT V: ESSENTIALS OF COMPUTER SCIENCE:

1. Identifying the attributes of network (Topology, service provider, IP address and bandwidth of

- 2. your college network) and prepare a report covering network architecture.
- 3. Identify the types of malwares and required firewalls to provide security.
- 4. Latest Fraud techniques used by hackers.

SEMESTER-I

COURSE 2: ADVANCES IN MATHEMATICAL, PHYSICALAND CHEMICAL SCIENCES

Theory	y Credits: 4	5 hrs/week

Course Objective:

The objective of this course is to provide students with an in-depth understanding of the recent advances and cutting-edge research in mathematical, physical, and chemical sciences. The course aims to broaden students' knowledge beyond the foundational concepts and expose them to the latest developments in these disciplines, fostering critical thinking, research skills, and the ability to contribute to scientific advancements.

Learning outcomes:

1. Explore the applications of mathematics in various fields of physics and chemistry, to understand how mathematical concepts are used to model and solve real-world problems.

2. To Explain the basic principles and concepts underlying a broad range of fundamental areas of physics and to Connect their knowledge of physics to everyday situations.

3. Understand the different sources of renewable energy and their generation processes and advances in nanomaterials and their properties, with a focus on quantum dots. To study the emerging field of quantum communication and its potential applications. To gain an understanding of the principles of biophysics in studying biological systems. Explore the properties and applications of shape memory materials.

3. Understand the principles and techniques used in computer-aided drug design and drug delivery systems, to understand the fabrication techniques and working principles of nanosensors. Explore the effects of chemical pollutants on ecosystems and human health.

4. Understand the interplay and connections between mathematics, physics, and chemistry in various advanced applications. Recognize how mathematical models and physical and chemical principles can be used to explain and predict phenomena in different contexts.

5 Understand and convert between different number systems, such as binary, octal, decimal, and hexadecimal. Differentiate between analog and digital signals and understand their characteristics.Gain knowledge of different types of transmission media, such as wired (e.g., copper cables, fiber optics) and wireless (e.g., radio waves, microwave, satellite)..

UNIT I: ADVANCES IN BASICS MATHEMATICS

Straight Lines: Different forms – Reduction of general equation into various forms – Point of intersection of two straight lines

Limits and Differentiation: Standard limits – Derivative of a function –Problems on product ruleand quotient rule

Integration: Integration as a reverse process of differentiation – Basic methods of integration

Matrices: Types of matrices – Scalar multiple of a matrix – Multiplication of matrices – Transpose of a matrix and determinants

UNIT II: ADVANCES IN PHYSICS:

Renewable energy: Generation, energy storage, and energy-efficient materials and devices. **Recent advances in the field of nanotechnology**: Quantum dots, Quantum Communication-recent advances in biophysics- recent advances in medical physics- Shape Memory Materials.

UNIT III: ADVANCES IN CHEMISTRY:

Computer aided drug design and delivery, nano sensors, Chemical Biology, impact of chemical pollutants on ecosystems and human health, Dye removal - Catalysis method

UNIT IV: ADVANCED APPLICATIONS OF MATHEMATICS, PHYSICS & CHEMISTRY

Mathematical Modelling applications in physics and chemistry

Application of Renewable energy: Grid Integration and Smart Grids,

Application of nanotechnology: Nanomedicine,

Application of biophysics: Biophysical Imaging, Biomechanics, Neurophysics,

Application of medical physics: Radiation Therapy, Nuclear medicine

Solid waste management, Environmental remediation- Green Technology, Water treatment.

UNIT V: Advanced Applications of computer Science

Number System-Binary, Octal, decimal, and Hexadecimal, Signals-Analog, Digital, Modem, Codec, Multiplexing, Transmission media, error detection and correction- Parity check and CRC, Networking devices- Repeater, hub, bridge, switch, router, gateway.

Recommended books:

- 1. Coordinate Geometry by S.L.Lony, Arihant Publications
- 2. Calculus by Thomas and Finny, Pearson Publications
- 3. Matrices by A.R.Vasishtha and A.K.Vasishtha, Krishna Prakashan Media(P)Ltd.
- 4. "Renewable Energy: Power for a Sustainable Future" by Godfrey Boyle
- 5. "Energy Storage: A Nontechnical Guide" by Richard Baxter

6. "Nanotechnology: Principles and Applications" by Sulabha K. Kulkarni and Raghvendra A. Bohara

- 7. "Biophysics: An Introduction" by Rodney Cotterill
- 8. "Medical Physics: Imaging" by James G. Webster
- 9. "Shape Memory Alloys: Properties and Applications" by Dimitris C. Lagoudas
- 10. Nano materials and applications by M.N.Borah

- 11. Environmental Chemistry by Anil.K.D.E.
- 12. Digital Logic Design by Morris Mano
- 13. Data Communication & Networking by Bahrouz Forouzan.

STUDENT ACTIVITIES

UNIT I: ADVANCES IN BASIC MATHEMATICS

1: Straight Lines Exploration

Provide students with a set of equations representing straight lines in different forms, such as slope-intercept form, point-slope form, or general form.

Students will explore the properties and characteristics of straight lines, including theirslopes, intercepts, and point of intersection.

2: Limits and Differentiation Problem Solving

Students will apply the concept of limits to solve various problems using standard limits.

Encourage students to interpret the results and make connections to real-world applications, such as analyzing rates of change or optimizing functions.

3: Integration Exploration

Students will explore the concept of integration as a reverse process of differentiation and apply basic methods of integration, such as the product rule, substitution method, or integration by parts.

Students can discuss the significance of integration in various fields, such as physics and chemistry 4: Matrices Manipulation

Students will perform operations on matrices, including scalar multiplication, matrixmultiplication, and matrix transpose.

Students can apply their knowledge of matrices to real-world applications, such as solvingsystems of equations or representing transformations in geometry.

UNIT II: ADVANCES IN PHYSICS:

1: Case Studies

Provide students with real-world case studies related to renewable energy, nanotechnology, biophysics, medical physics, or shape memory materials.

Students will analyze the case studies, identify the challenges or problems presented, and propose innovative solutions based on the recent advances in the respective field.

They will consider factors such as energy generation, energy storage, efficiency,

sustainability, materials design, biomedical applications, or technological advancements. 2: Experimental Design

Assign students to design and conduct experiments related to one of the topics: renewableenergy, nanotechnology, biophysics, medical physics, or shape memory materials. They will identify a specific research question or problem to investigate and design an experiment accordingly.

Students will collect and analyze data, interpret the results, and draw conclusions based ontheir findings.

They will discuss the implications of their experimental results in the context of recentadvances in the field.

3: Group Discussion and Debate

Organize a group discussion or debate session where students will discuss the ethical, social, and environmental implications of the recent advances in renewable energy, nanotechnology, biophysics, medical physics, and shape memory materials.

Assign students specific roles, such as proponent, opponent, or moderator, and provide them with key points and arguments to support their positions.

UNIT III: ADVANCES IN CHEMISTRY:

1. Experimental Design and Simulation

In small groups, students will design experiments or simulations related to the assigned topic.

For example, in the context of computer-aided drug design, students could design a virtualscreening experiment to identify potential drug candidates for a specific disease target.

For nano sensors, students could design an experiment to demonstrate the sensitivity and selectivity of nano sensors in detecting specific analytes.

Chemical biology-related activities could involve designing experiments to study enzyme-substrate interactions or molecular interactions in biological systems.

Students will perform their experiments or simulations, collect data, analyze the results, and draw conclusions based on their findings.

2. Case Studies and Discussion

Provide students with real-world case studies related to the impact of chemical pollutants onecosystems and human health.

Students will analyze the case studies, identify the sources and effects of chemical pollutants, and propose mitigation strategies to minimize their impact.

Encourage discussions on the ethical and environmental considerations when dealing withchemical pollutants.

For the dye removal using the catalysis method, students can explore case studies wherecatalytic processes are used to degrade or remove dyes from wastewater.

Students will discuss the principles of catalysis, the advantages and limitations of thecatalysis method, and its applications in environmental remediation.

3: Group Project

Assign students to work in groups to develop a project related to one of the topics.

The project could involve designing a computer-aided drug delivery system, developing anano sensor for a specific application, or proposing strategies to mitigate the impact of chemical pollutants on ecosystems. Students will develop a detailed project plan, conduct experiments or simulations, analyzedata, and present their findings and recommendations.

Encourage creativity, critical thinking, and collaboration throughout the project.

UNIT IV: ADVANCED APPLICATIONS OF MATHEMATICS, PHYSICS & CHEMISTRY

1: Mathematical Modelling Experiment

Provide students with a mathematical modelling experiment related to one of the topics. Forexample, in the context of renewable energy, students can develop a mathematical model to optimize the placement and configuration of solar panels in a solar farm.

Students will work in teams to design and conduct the experiment, collect data, and analyze results using mathematical models and statistical techniques.

They will discuss the accuracy and limitations of their model, propose improvements, and

interpret the implications of their findings in the context of renewable energy or the specificapplication area.

2: Case Studies and Group Discussions

Assign students to analyze case studies related to the applications of mathematical modellingin nanotechnology, biophysics, medical physics, solid waste management, environmental remediation, or water treatment.

Students will discuss the mathematical models and computational methods used in the case studies, analyze the outcomes, and evaluate the effectiveness of the modelling approach.

Encourage group discussions on the challenges, ethical considerations, and potential advancements in the field.

Students will present their findings and engage in critical discussions on the advantages and limitations of mathematical modelling in solving complex problems in these areas.

3. Group Project

Assign students to work in groups to develop a group project that integrates mathematical modelling with one of the application areas: renewable energy, nanotechnology, biophysics, medical physics, solid waste management, environmental remediation, or water treatment.

The project could involve developing a mathematical model to optimize the delivery of radiation therapy in medical physics or designing a mathematical model to optimize wastemanagement practices. Students will plan and execute their project, apply mathematical modelling techniques, analyze the results, and present their findings and recommendations.

Encourage creativity, critical thinking, and collaboration throughout the project.

UNIT V: Advanced Applications of computer Science

Students must be able to convert numbers from other number system to binary numbersystems

1. Identify the networking media used for your college network Identify all the networking devices used in your college premises. Theory

Credits: 3

3 hrs/week

COURSE OBJECTIVE:

The course on Mechanics and Properties of Matter aims to provide students with a fundamental understanding of the behaviour of physical systems, both in terms of mechanical motion and in terms of the properties of matter

LEARNING OUTCOMES:

- 1. Students will be able to understand and apply the concepts of scalar and vector fields, calculate the gradient of a scalar field, determine the divergence and curl of a vector field.
- 2. Students will be able to apply the laws of motion, solve equations of motion for variable mass systems
- 3. Students will be able to define a rigid body and comprehend rotational kinematic relations, derive equations of motion for rotating bodies, analyze the precession of a top and gyroscope, understand the precession of the equinoxes
- 4. Students will be able to define central forces and provide examples, understand the characteristics and conservative nature of central forces, derive equations of motion under central forces.
- 5. Students will be able to differentiate between Galilean relativity and the concept of absolute frames, comprehend the postulates of the special theory of relativity, apply Lorentz transformations, understand and solve problems

UNIT-I VECTOR ANALYSIS

Scalar and vector fields, gradient of a scalar field and its physical significance. Divergence and curl of a vector field with derivations and physical interpretation. Vector integration (line, surface and volume), Statement and proof of Gauss and Stokes theorems.

UNIT-II MECHANICS OF PARTICLES

Laws of motion, motion of variable mass system, Equation of motion of a rocket. Conservation of energy and momentum, Collisions in two and three dimensions, Concept of impact parameter, scattering cross-section, Rutherford scattering-derivation.

UNIT-III MECHANICS OF RIGID BODIES AND CONTINUOUS MEDIA

Definition of rigid body, rotational kinematic relations, equation of motion for a rotating body, Precession of a top, Gyroscope, Precession of the equinoxes. Elastic constants of isotropic solids and their relations, Poisson's ratio and expression for Poisson's ratio. Classification of beams, types of bending, point load, distributed load.

UNIT-IV CENTRAL FORCES

Central forces, definition and examples, characteristics of central forces, conservative nature of central forces, conservative force as a negative gradient of potential energy, equations of motion under a . Derivation of Kepler's laws. Motion of satellites

UNIT-V SPECIAL THEORY OF RELATIVITY

Galilean relativity, Absolute frames. Michelson-Morley experiment, The negative result. Postulates of special theory of relativity. Lorentz transformation, time dilation, length contraction, addition of velocities, mass-energy relation.

REFERENCE BOOKS:

- 1. BSc Physics Telugu Akademy, Hyderabad
- 2. Mechanics D.S. Mathur, Sulthan Chand & Co, New Delhi
- 3. Mechanics J.C. Upadhyaya, Ramprasad & Co., Agra
- 4. Properties of Matter D.S. Mathur, S.Chand & Co, New Delhi ,11th Edn., 2000
- 5. Physics Vol. I Resnick-Halliday-Krane ,Wiley, 2001
- 6. Properties of Matter Brijlal & Subrmanyam, S. Chand & Co. 1982
- 7. Dynamics of Particles and Rigid bodies- Anil Rao, Cambridge Univ Press, 2006
- 8. Mechanics-EM Purcell, Mc Graw Hill
- 9. University Physics-FW Sears, MW Zemansky & HD Young, Narosa Publications, Delhi
- 10. College Physics-I. T. Bhima sankaram and G. Prasad. Himalaya Publishing House.
- 11. Mechanics, S. G. Venkata chalapathy, Margham Publication, 2003.

SEMESTER-II COURSE 3: MECHANICS AND PROPERTIES OF MATTER

Practical	Credits: 1	2hrs/week

COURSE OBJECTIVE:

To develop practical skills in the use of laboratory equipment and experimental techniques for measuring properties of matter and analyzing mechanical systems.

LEARNING OUTCOMES:

- 1. Mastery of experimental techniques: Students should become proficient in using laboratory equipment and experimental techniques to measure properties of matter and analyze mechanical systems.
- 2. Application of theory to practice: Students should be able to apply theoretical concepts learned in lectures to real-world situations, and understand the limitations of theoretical models.
- 3. Accurate recording and analysis of data: Students should be able to accurately record and analyze experimental data, including understanding the significance of error analysis and statistical methods.
- 4. Critical thinking and problem solving: Students should be able to identify sources of error, troubleshoot experimental problems, and develop critical thinking skills in experimental design and analysis.
- 5. Understanding of physical principles: Students should develop an understanding of the physical principles governing mechanical systems and the properties of matter, including elasticity, viscosity, and thermal expansion.

Minimum of 6 experiments to be done and recorded

- 1. Viscosity of liquid by the flow method (Poiseuille's method)
- 2. Young's modulus of the material of a bar (scale) by uniform bending
- 3. Young's modulus of the material a bar (scale) by non- uniform bending
- 4. Surface tension of a liquid by capillary rise method
- 5. Determination of radius of capillary tube by Hg thread method
- 6. Viscosity of liquid by Searle's viscometer method
- 7. Bifilar suspension –moment of inertia of a regular rectangular body.
- 8. Determination of moment of inertia using Fly-wheel
- 9. Determination of the height of a building using a sextant.
- 10. Rigidity modulus of material of a wire-dynamic method (torsional pendulum)

STUDENT ACTIVITIES

Unit I: Vector Analysis Activity: Field Mapping

Students can choose a physical field (e.g., temperature, magnetic field) and create a field map by taking measurements at different points. They can then calculate the gradient of the field and analyse the variations. This activity helps them understand the concept of gradient in a scalar field.

Unit II: Mechanics of Particles Activity: Collision Experiments

Students can set up simple collision experiments using marbles, carts, or other objects. They can measure the initial and final velocities, masses, and analyze the momentum conservation. By varying the conditions (e.g., masses, initial velocities), they can observe the effects on the collision outcomes.

Unit III: Mechanics of Rigid Bodies and Continuous Media Activity: Balancing Act

Students can experiment with balancing various objects (e.g., rulers, books) on different points to understand the concept of center of mass and stability. They can analyse the equilibrium conditions and explore how the position of the center of mass affects the stability.

Unit IV: Central Forces Activity: Pendulum Motion

Students can investigate the motion of a simple pendulum by varying its length and measuring the time period. They can analyze the relationship between the period and the length, and discuss the concept of centripetal force and its role in circular motion.

Unit V: Special Theory of Relativity Activity: Time Measurement

Students can perform a time measurement experiment using simple devices like water clocks or sand timers. They can compare the measured time between two events at different relative speeds and discuss the concept of time dilation

SEMESTER-II COURSE 4: WAVES AND OSCILLATIONS

COURSE OBJECTIVE:

This course provides students with a broad understanding of the physical principles of the oscillations, to help them develop critical thinking and quantitative reasoning skills, to empower them to think creatively and critically about scientific problems and experiments.

LEARNING OUTCOMES:

The student should be able

- 1. To describe the basic characteristics of waves such as frequency, wavelength, amplitude, period, and speed.
- 2. To utilize mathematical relationships related to wave characteristics.
- 3. To compare particle motion and wave motion in different types of waves.
- 4. To distinguish between Longitudinal and Transverse waves.
- 5. To get the knowledge about how to construct and analysis the square waves, saw tooth waves, etc. from Fourier analysis

UNIT-I Simple Harmonic oscillations

Simple harmonic oscillator and solution of the differential equation-Physical characteristics of SHM, torsion pendulum-measurements of rigidity modulus, compound pendulum- measurement of 'g', Principle of superposition, beats, combination of two mutually perpendicular simple harmonic vibrations of same frequency and different frequencies. Lissajous figures.

UNIT-II Damped and forced oscillations

Damped harmonic oscillator, solution of the differential equation of damped oscillator. Energy considerations, comparison with un-damped harmonic oscillator, logarithmic decrement, relaxation time, quality factor, differential equation of forced oscillator and its solution, amplitude resonance and velocity resonance.

UNIT-III Complex vibrations

Fourier theorem and evaluation of the Fourier coefficients, analysis of periodic wave functions-square wave, triangular wave, saw tooth wave, simple problems on evolution of Fourier coefficients.

UNIT-IV Vibrating Strings and Bars

Transverse wave propagation along a stretched string, general solution of wave equation and its significance, modes of vibration of stretched string clamped at ends, overtones and harmonics. Energy

9hr

transport and transverse impedance. Longitudinal vibrations in bars-wave equation and its general solution. Special cases (i) bar fixed at both ends (ii) bar fixed at the midpoint (iii) bar fixed at one end. Tuning fork.

UNIT-V Ultrasonics:

Ultrasonics, properties of ultrasonic waves, production of ultrasonics by piezoelectric and magneto strictive methods, detection of ultrasonics, determination of wavelength of ultrasonic waves. Applications and uses of ultrasonic waves.

REFERENCE BOOKS:

- 1. BSc Physics Vol.1, Telugu Academy, Hyderabad.
- 2. Fundamentals of Physics. Halliday/Resnick/Walker, Wiley India Edition 2007.
- 3. Waves & Oscillations. S.Badami, V. Balasubramanian and K.R. Reddy, Orient Longman.
- 4. College Physics-I. T. Bhimasankaram and G. Prasad. Himalaya Publishing House.
- 5. Science and Technology of Ultrasonics- Baldevraj, Narosa, New Delhi, 2004
- 6. Introduction to Physics for Scientists and Engineers. F.J. Buche. McGraw Hill.

SEMESTER-II COURSE 4: WAVES AND OSCILLATIONS

Practical

2hrs/week

COURSE OBJECTIVE:

This course provides students with a broad understanding of the physical principles of the oscillations, to help them develop critical thinking and quantitative reasoning skills, to empower them to think creatively and critically about scientific problems and experiments.

LEARNING OUTCOMES:

- 1. Students are made to determine the unknown frequency of tuning fork by volume resonator experiment
- 2. Students are made to determine 'g' by compound/bar pendulum
- 3. Students are made to determine the force constant of a spring by static and dynamic method.
- 4. Students are made to determine the elastic constants of the material of a flat spiral spring.
- 5. Students are made to verify the laws of vibrations of stretched string -sonometer
- 6. Students are made to determine the frequency of a bar –Melde's experiment.
- 7. Students are made to study the damped oscillation using the torsional pendulum immersed in liquid-decay constant and damping correction of the amplitude.
- 8. Students are made to form Lissajous figures using CRO.

Minimum of 6 experiments to be done and recorded

Experiments

- 1. Volume resonator experiment
- 2. Determination of 'g' by compound/bar pendulum
- 3. Simple pendulum normal distribution of errors-estimation of time period and the error of the mean by statistical analysis
- 4. Determination of the force constant of a spring by static and dynamic method.
- 5. Determination of the elastic constants of the material of a flat spiral spring.
- 6. Coupled oscillators
- 7. Verification of laws of vibrations of stretched string –sonometer
- 8. Determination of frequency of a bar –Melde's experiment.
- 9. Study of a damped oscillation using the torsional pendulum immersed in liquid-decay constant and damping correction of the amplitude.
- 10. Formation of Lissajous figures using CRO.

STUDENT ACTIVITIES

Unit-I Simple Harmonic oscillations:

Activity: Measuring the period of a simple pendulum and verifying the relationship between the period and the length of the pendulum. Students can use a stopwatch and a ruler to measure the time for a fixed number of oscillations and calculate the period.

Unit-II Damped and forced oscillations:

Activity: Measuring the damping coefficient of a mass-spring system and calculating the quality factor. Students can measure the amplitude of the system as it undergoes damped oscillations and use the logarithmic decrement formula to calculate the damping coefficient. They can then use the formula for the quality factor to evaluate the quality of the system.

Unit-III Complex vibrations:

Activity: Constructing a square wave using Fourier series and analyzing its Fourier coefficients. Students can use a software tool or a programming language to generate a square wave and then compute the Fourier coefficients. They can then plot the magnitude spectrum of the waveform and observe the harmonic components.

Unit-IV Vibrating Strings and Bars:

Activity: Measuring the speed of sound in a metal rod and comparing it with the theoretical value. Students can use a microphone and an oscilloscope to measure the time delay between two reflections of a sound pulse in the rod. They can then use the formula for the speed of sound in a solid to calculate the speed and compare it with the theoretical value.

Unit-V Ultrasonics:

Activity: Measuring the wavelength of ultrasonic waves using the diffraction of light. Students can use a laser and a diffraction grating to create a diffraction pattern of an ultrasonic wave. They can then measure the distance between the diffraction fringes and use the formula for the diffraction of light to calculate the wavelength of the ultrasonic wave.

Ser I Major-1

ANDHRA KESARI UNIVERSITY

B.Sc. I Year I Semester End Examinations

Major Course 1: Essentials and Applications of Mathematical, Physical and Chemical

Sciences

[Common for B.Sc. Major course in Physics, Chemistry, Computer Science & Electronics] [With effect from AY: 2023-24]

Time: 3 Hours

Max. Marks: 75

SECTION-A

Answer any FIVE out of the following. Each question carries 10 marks... 5X10 = 50 Marks

1. (a) Find the modulus of the following complex numbers.

(i) (3-4i)(4+3i) (ii) $\frac{(3-4i)}{(5+7i)}$

(b) Express $\sqrt{3} - i$ in modulus amplitude form.

- 2. (a) Find the angle between the vectors (i + 2j + 3k) and (3i j + 2k)
 - (b) Find the mean of the following frequency distribution.

Class Interval	0-10	10-20	20-30	30-40	40-50
Number of workers	7	10	15	8	10

- 3. State and explain Newton's laws of motion.
- 4. State and explain First and Second laws of thermodynamics.
- 5. Describe different branches of Chemistry.
- 6. Write different types of Vitamins and their importance.
- 7. (a) Mention various applications of physics in semiconductor industry.
 - (b) Mention various applications of chemistry in food industry.
- 8. (a) Mention various applications of physics in environmental monitoring.
 - (b) Mention various applications of chemistry in chemical manufacturing industry.
- 9. Explain Symmetric ciphers with suitable examples.
- 10. Discuss the different generations of Computers.

SECTION - B

Answer any FIVE out of the following. Each question carries 5 marks ... 5X5 = 25 Marks

- 11. If $A+B = 45^{\circ}$, show that (1 + tanA)(1 + tanB) = 2
- 12. If sin $A = \frac{4}{2}$ find the value of (cos A + tan A)

- 13. Find the unit vector in the direction of vector $X = 3\overline{i} + 4\overline{j} + 5\overline{k}$
- 14. Find the vector product of two vectors, $2\overline{i} \overline{j} + \overline{k}$ and $3\overline{i} + 5\overline{j} \overline{k}$
- 15. What are the applications of acoustic waves?
- 16. Explain wave particle duality.
- 17. Write electronic configurations of chromium, Iron, Sodium, Magnesium and silicon.

- 18. Write different sources of carbohydrates.
- 19. Write the differences between Security and Privacy.
- 20. Explain briefly about LAN, MAN and WAN

Sem I / Major-2

ANDHRA KESARI UNIVERSITY B.Sc. I Year I Semester End Examinations

Major Course 2: Advances in Mathematical, Physical and Chemical Sciences

[Common for B.Sc. Major course in Physics, Chemistry, Computer Science & Electronics] [With effect from AY: 2023-24]

MODEL QUESTION PAPER

Time: 3 Hours

Max. Marks: 75

SECTION-A

Answer any *FIVE* out of the following. Each question carries 10 marks... 5X10 = 50 Marks

1. If $A = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 1 & -1 \\ 3 & -1 & 1 \end{bmatrix}$, then find the value of $A^3 - 3A^2 - A - 3I$

- 2. Reduce the equation 4x 3y + 12 = 0 into
 - (i) Slope intercept form
 - (ii) Intercept form and
 - (iii) Normal form
- 3. What are renewable and non-renewable energies? Explain different types of renewable energy sources.
- 4. Explain about shape memory materials and their applications.
- 5. Write the impact of chemical pollutants on eco system.
- 6. Explain about the chemical pollutants on soil.
- 7. (a) Explain briefly about biophysical imaging.(b) Write a short note on solid waste management.
- 8. (a) Write a short note on radiation therapy.(b) Write a short note on green-tech.
- 9. Explain about Cyclic Redundancy Check (CRC) with example.
- 10. Explain the various number systems and codes and their conversion with examples for each.

SECTION - B

Answer any FIVE out of the following. Each question carries 5 marks ... 5X5 = 25 Marks

11. Show that
$$\lim_{x\to 0} \frac{\sqrt{x+1}-1}{x} = \frac{1}{2}$$

12. Differentiate $x \log x$ with respect to x

13. Find the value of $\int (\sec^2 x - e^x + \sin x) dx$

14. Show that $\begin{vmatrix} 1 & \omega & \omega^2 \\ \omega & \omega^2 & 1 \\ \omega^2 & 1 & \omega \end{vmatrix} = 0$

15. Write a short note on quantum communication.

16. Explain about the generation of solar energy.

17. Write various applications of nano sensors.

18. Mention the different chemical pollutants in air.

19. Write the differences between Switch and Router.

20. Convert the following to the corresponding bases

(i)
$$(9BCD)_{16} = ()_2$$

(ii)
$$(323)_{10} = ()_8$$

Sem. II / Major - 3

ANDHRA KESARI UNIVERSITY I Year II Semester End Examinations B.Sc. Physics (Major) Major Course-3 : Mechanics and Properties of Matter [With effect from AY: 2023-24] MODEL QUESTION PAPER

Time: 3 Hours

Max. Marks: 75

SECTION-A

Answer any *FIVE* out of the following. Each question carries 10 marks... 5X10 = 50 Marks

- 1. State and prove Gauss's divergence theorem.
- 2. Define scalar and vector fields. Give examples. State and prove Stoke's theorem.
- 3. Derive an expression for Rutherford scattering formula of alpha particle collision with a heavy nucleus.
- 4. Derive an expression for the velocity of a rocket at any given instant of time.
- 5. What is precessional motion of a symmetric top? Obtain an expression for the precessional velocity of a symmetric top.
- 6. Define the three moduli of elasticity. Obtain the relationship between them.
- 7. State Kepler's laws of planetary motion. Derive Kepler's second and third laws of motion.
- 8. Obtain an expression for the angular velocity of a satellite orbiting the earth.
- 9. Describe Michelson-Morley experiment and discuss its result.
- 10. Derive Lorentz transformation equations from special theory of relativity.

SECTION - B

Answer any FIVE out of the following. Each question carries 5 marks ... 5X5 = 25 Marks

- 11. Prove that the curl of a gradient is zero.
- 12. What is curl of vector field? Explain its physical significance.
- 13. A body of mass m_1 moving with velocity v_1 collides with another body of mass m_2 at rest. After collision the velocity of m_1 becomes $\frac{3}{4}$ times of the velocity. Find the ratio of their masses.
- 14. Explain the concepts : Impact parameter and scattering cross section.
- 15 Explain the principle of working of average

- 16. Obtain the equation of motion for a rotating body.
- 17. What are central forces? Show that the central force is conservative in nature.
- 18. If the earth be one-half of its present distance from the sun, what will be the number of days in a year?
- 19. Deduce Einstein's mass-energy relation.
- 20. Explain about time dilation.

Sem II / Major - 4

ANDHRA KESARI UNIVERSITY I Year II Semester End Examinations B.Sc. Physics (Major) Major Course-4 : Waves and Oscillations [With effect from AY: 2023-24] MODEL QUESTION PAPER

Time: 3 Hours

Max. Marks: 75

SECTION-A

Answer any *FIVE* **out of the following. Each question carries 10 marks...** 5X10 = 50 Marks

- 1. Discuss the linear combination of two mutually perpendicular simple harmonic vibrations of same frequency.
- 2. Explain how the rigidity modulus of the material of a wire can be determined using a torsional pendulum with necessary theory.
- 3. Set up the differential equation of a damped harmonic oscillator and discuss its solution when it is under damped motion.
- 4. Obtain an expression for amplitude of forced vibrations and find the condition for amplitude resonance.
- 5. Analyze a square wave with the help of Fourier theorem.
- 6. Analyze a triangular wave form with the help of Fourier theorem.
- 7. Obtain an expression for the velocity of transverse waves along stretched string. The speed of a transverse wave on a stretched string is 500 m/s, when it is stretched under a tension of 19.6 N. If the tension is altered to a value of 78.4 N, what will be the speed of the wave.
- 8. Derive the wave equation for longitudinal vibrations in a bar fixed at both ends and discuss its solution.
- 9. Describe the production of ultrasonics by magnetostriction method.
- Explain the various methods of detection of ultrasonics. The velocity of sound in a piezoelectric X-cut crystal of thickness 0.003 m is 5750 m/s. Calculate the fundamental frequency of the ultrasonic waves produced.

SECTION - B

Answer any FIVE out of the following. Each question carries 5 marks ... 5X5 = 25 Marks

- 11. Define SHM. Obtain the differential equation of SHM.

- 13. Explain the logarithmic decrement.
- 14. Explain Quality factor.
- 15. Obtain the expressions for Fourier coefficients.
- 16. State Fourier theorem. What are its limitations.
- 17. Write a note on transverse impedance.
- 18. Distinguish between harmonics and overtones.
- 19. What is meant by piezoelectric effect. What are X-cut and Y-cut crystals.
- 20. Mention any five applications of ultrasonics.
